diff options
author | jwansek <eddie.atten.ea29@gmail.com> | 2021-11-26 17:57:07 +0000 |
---|---|---|
committer | jwansek <eddie.atten.ea29@gmail.com> | 2021-11-26 17:57:07 +0000 |
commit | 1f5dec8047af8c58ce3acb5014d82caf7e6766df (patch) | |
tree | 5d54f191befb210c733f7a5a85de2906c79509f0 | |
parent | fd2b9c85377df274514c6f0542cd6d1dbcbab183 (diff) | |
download | searchEngine-1f5dec8047af8c58ce3acb5014d82caf7e6766df.tar.gz searchEngine-1f5dec8047af8c58ce3acb5014d82caf7e6766df.zip |
split large texts up into more managable chunks
-rw-r--r-- | database.py | 10 | ||||
-rw-r--r-- | terms.py | 15 |
2 files changed, 18 insertions, 7 deletions
diff --git a/database.py b/database.py index 5c326b4..8fc3584 100644 --- a/database.py +++ b/database.py @@ -84,6 +84,11 @@ class Database: cursor.execute("SELECT COUNT(*) FROM documents;")
return cursor.fetchone()[0]
+ def get_max_linked_terms(self):
+ with self.__connection.cursor(factory = DatabaseCursor) as cursor:
+ cursor.execute("SELECT MAX(`document_id`) + 2 FROM term_weights;")
+ return cursor.fetchone()[0]
+
def append_terms(self, terms):
with self.__connection.cursor(factory = DatabaseCursor) as cursor:
cursor.executemany("INSERT OR IGNORE INTO vocabulary(term) VALUES (?);", [(term, ) for term in terms])
@@ -211,5 +216,6 @@ if __name__ == "__main__": # print(db.test_log(100))
# print(db.test_log(21))
# db.get_tf_idf_table()
- for i, v in db.get_tf_idf_score("enzyme", 1).items():
- print(i, v)
\ No newline at end of file + #for i, v in db.get_tf_idf_score("enzyme", 1).items():
+ # print(i, v)
+ print(db.get_max_linked_terms())
@@ -30,15 +30,18 @@ LEM = WordNetLemmatizer() def main(): numdocs = documents.get_num_documents() + with database.Database() as db: + startat = db.get_max_linked_terms() - 1 #docid = random.randint(1, numdocs) #parse_document(docid, documents.get_document_name_by_id(docid), numdocs) - for document_id in range(1, numdocs): + for document_id in range(startat, numdocs): parse_document(document_id, documents.get_document_name_by_id(document_id), numdocs) #break def parse_region(raw_text, region_weight, document_id): + print("d: %d; w: %d; len = %d" % (document_id, region_weight, len(raw_text))) terms = word_tokenize(raw_text) terms = [re.sub(r"[^a-zA-Z0-9\s]", "", term).rstrip().lower() for term in terms] terms = [LEM.lemmatize(i) for i in terms if i != "" and i not in STOPWORDS] @@ -85,10 +88,12 @@ def parse_document(document_id, document_path, numdocs): weighted_linked_terms += region_linked_terms # parse the main text, it has a weight of 1 - text = [e.text for e in soup.find("div", {"class": "mw-parser-output"}).findChildren(recursive = True)] - region_weighted_terms, region_linked_terms = parse_region(" ".join(text), 1, document_id) - weighted_terms += region_weighted_terms - weighted_linked_terms += region_linked_terms + text = " ".join([e.text for e in soup.find("div", {"class": "mw-parser-output"}).findChildren(recursive = True)]) + # split large texts into more manageable chunks + for splittext in [text[i:i+99999] for i in range(0, len(text), 99999)]: + region_weighted_terms, region_linked_terms = parse_region(splittext, 1, document_id) + weighted_terms += region_weighted_terms + weighted_linked_terms += region_linked_terms # parse html headers elemtexts = [] |